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Resonantly generated internal waves in a 
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The near-resonant flow of a stratified fluid through a localized contraction is 
considered in the long-wavelength weakly nonlinear limit to investigate the transient 
development of nonlinear internal waves and whether these might lead to local steady 
hydraulic flows. It is shown that under these circumstances the response of the fluid will 
fall into one of three categories, the first governed by a forced Korteweg-de Vries 
equation and the latter two by a variable-coefficient form of this equation. The 
variable-coefficient equation is discussed using analytical approximations and 
numerical solutions when the forcing is of the same (positive) and of opposite 
(negative) polarity to that of free solitary waves in the fluid. For positive and negative 
forcing, strong and weak resonant regimes will occur near the critical point. In these 
resonant regimes for positive forcing the flow becomes locally steady within the 
contraction, while for negative forcing it remains unsteady within the contraction. The 
boundaries of these resonant regimes are identified in the limits of long and short 
contractions, and for a number of common stratifications. 

1. Introduction 
The dynamics of a stratified fluid in a contraction are of considerable oceanographic 

and engineering importance owing, among many reasons, to the possibility of flow 
control occurring. Therefore, much of the work on this topic has taken the approach 
of using steady hydraulic theory to determine the conditions under which these 
controls develop and the form they take. Hydraulic theory for a stratified fluid was first 
used by Wood (1968) in considering the selective withdrawal of fluid from an infinite 
reservoir through a slowly varying contraction; this dealt with both discrete layers and 
the limiting case of a continuously stratified fluid. Further work on this was performed 
by Benjamin (1 98 1). Armi & Farmer (1986) considered the case of two discrete layers, 
which was applied to the flow in the Strait of Gibraltar by Armi & Farmer (1988). 
The work on continuously stratified fluids has been extended by Armi & Williams 
(1993), who presented experiments and theory studying the withdrawal through a 
contraction from an infinite reservoir. Recently Killworth (1992) has proposed a 
generalized approach for continuously stratified and layered fluids which is applicable 
to contractions joining reservoirs and to localized contractions in channels. It is this 
latter case we intend to study here. 

Hydraulic theory makes a quasi-horizontal flow hypothesis, and apart from 
hydraulic shocks assumes that the flow is steady; therefore no waves occur. One would 
not expect this assumption to be satisfied in practice, as owing to the stratification there 
will always be unsteady motion, ranging from basin-scale waves down to microscale 
turbulence. However, these do not necessarily cause the hydraulic theories to be invalid 
as they are more concerned with the large-scale aspects of the flow. For example, 
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Pierini (1 989) demonstrated that the tidal exchange in the Strait of Gibraltar, which 
is a hydraulic process, caused the radiation of large-amplitude solitary waves in the 
Mediterranean Sea. Although hydraulics flows can be used as boundary or initial 
conditions for transient problems, as done by Pierini (1989), hydraulic theory is not 
well-suited for studying transient problems. Most significantly, it cannot be easily used 
to determine how steady hydraulic flows develop, or whether a steady flow will evolve 
from a particular initial condition. The importance of this is that hydraulic theories 
concentrate on the position and flow conditions at control points, where the long-wave 
speed of internal wave modes are zero, as demonstrated by Killworth (1992). At these 
points the resonant forcing of one particular mode will occur, over and above the 
forcing of other modes. Therefore, it is instructive to consider the near-critical forcing 
of internal waves in a contraction, as is the purpose here, as this provides one possible 
evolution path to hydraulic flows which are steady within the vicinity of the 
contraction. Conversely, it may show that a steady flow would not be expected to 
evolve within the contraction. The limitation of this approach is that the transient 
problem can only be studied in the weakly nonlinear limit, and is confined here to the 
case of a localized contraction in a channel. Our results are of direct relevance to the 
steady hydraulic theory of Killworth (1992), specifically case (U2) of that paper. 

Two recent papers have dealt with specific models of the near-critical unsteady flow 
of a stratified fluid through a contraction, largely concentrating on three-dimensional 
aspects of the wave formation. Melville & Macomb (1987) and Tomasson & Melville 
(1991) both consider interfacial waves in a channel where there is a difference in the 
width of the contraction in the upper and lower layers. Although the emphasis of these 
two papers is on three-dimensional waves, their analysis can be used to demonstrate 
that, except under exceptional conditions, the generation and propagation of two- 
dimensional waves is described by the forced Korteweg-de Vries (fKdV) equation 

(1.1) 

where G is proportional to the perturbation in the width of the contraction. This 
equation occurs in many other cases of the resonant forcing of waves due to a moving 
disturbance or flow past an obstacle. For example, Akylas (1984) and Wu (1987) 
consider it in relation to surface waves, Grimshaw & Smyth (1986) for internal waves, 
Patoine & Warn (1982) and Malanotte-Rizzoli (1984) for Rossby waves and Grimshaw 
(1 990) for inertial waves. For a general review of this equation see Grimshaw (1 992). 
The conditions under which (1.1) was derived by Tomasson & Melville are limited; in 
$2 a general derivation for the near-critical flow of a stable stratified fluid through a 
contraction or over a sill will be presented. 

The results of Tomasson & Melville (1 99 1) suggest that in the case where there is no 
difference of width in the upper and lower layers, the contraction will not cause the 
generation of any resonant waves. Similarly, the derivation of $2 suggests that if the 
width of the contraction or shear of the oncoming fluid do not vary with height, then 
no resonant wave generation is caused by the contraction in the limit of the 
Boussinesq approximation. The flaw in both of these analyses is that they ignore non- 
Boussinesq effects. In fj3 it will be demonstrated that in a straight-sided contraction 
with no shear, non-Boussinesq effects cause the resonant generation of waves, and that 
in this case the canonical equation is the variable-coefficient fKdV equation 

(1.2) 

A,+ AA,  + 6AA, +A,,, = - G,, 

A,  + (LIA),~ + 6AA, +A,,, = yd,. 

Here d(x) is the perturbation of the velocity from the long-wave speed, which varies 
in the same manner as the width of the contraction. This forcing due to the variation 
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in width is considered as positive for y > 0 and negative for y < 0. For positive forcing 
the waves generated by the contraction will have the same polarity as free solitary 
waves solutions of (1.2), while for negative forcing the waves will have opposite 
polarity. The remaining sections are concerned with an analysis of (1.2) using 
analytical and numerical methods. In $4 the matching technique used by Smyth (1987) 
to study (1.1) is used to study the case of positive forcing and this is compared to 
numerical solutions in $ 5 ,  while in $6 numerical solutions of (1.2) are used to analyse 
the case of negative forcing. Finally, the resonant regimes for (1.1) and (1.2) and the 
implications for local steady hydraulic solutions are discussed for a two-layer fluid and 
for exponentially and linearly stratified fluids. 

2. General case 
Consider the inviscid non-diffusive flow of a stratified fluid in a duct. A Cartesian 

coordinate system h(x,  y ,  z )  is introduced, where h is the undisturbed height of the free 
surface above the origin, x is the horizontal coordinate along the duct, y is the 
transverse coordinate and z is the vertical coordinate, being positive upwards. The 
density is pop(z - <) where cis the non-dimensional vertical particle displacement, while 
the buoyancy frequency N(z)  is defined as 

N 2  = -gp’(z)/hp(z), (2.1) 

where g is the magnitude of the acceleration due to gravity. The Boussinesq parameter, 
which measures the strength of the density stratification, is now defined as 

p = hNi /g ,  (2.2) 

Where No is a characteristic value of the buoyancy frequency. It is apparent that 
N 2  N pglh, and we normalize by defining 

M(z)  = N 2 / N i .  (2.3) 

The time variable is N i l t ,  while the fluid velocities are N,h(u, u, w), the free-surface 
displacement is hq and finally the pressure is written as pogh(p,(z) +/$I), where 
ph = -p .  The equations of motion describing flow in a duct with side boundaries 
y = b+(x,z) - and base z = d(x)  are therefore in dimensionless form 

dc/dt = W ,  

v * u  = 0,  

with the boundary conditions 

w = edq/dt 

w = ud, 

v = u-Vb+  - 

on z = 1 + ey(x, y ,  t ) ,  

on z = d(x), 
on y = b+(x,z). - 

The parameter e is 0 for a rigid-lid boundary condition and 1 for a free-surface 
boundary condition. 

The fluid is assumed to have undisturbed velocity ~ ( z )  and stratification p(z). If the 
combination of these are such that the flow is close to resonance, then it would be 
expected that any perturbation in the sides or base of the channel will result in the 
generation of nonlinear waves forced by these perturbations. Here, for simplicity, we 
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are supposing that the perturbations (i.e. b,  and d )  are introduced for t 2 0. The flow 
then adjusts to these perturbations. An alternative is to suppose that the undisturbed 
velocity ~ ( z )  is turned on at t = 0. For the ultimate resonant flow the outcome is the 
same, the difference being in small-amplitude starting transients. To derive a general 
evolution equation to describe this situation we first assume that the horizontal and 
time scales are long, and introduce 

(2.5) 

Next, the perturbations in the width and depth are assumed to be small, and can be 
written as 

(2.6) 

Assuming that the response of the fluid is O(a), we introduce the scaled variables 

(x, y ,  b * 3 0 = /,-Yx’, Y‘, b’, > 0. 

b; - = IfI b,( 1 + ~ f , ) ,  d = ~d’. 

u = u“(z) + au‘, v = FV’,  w = paw’, p = ap’, 6 = a c ,  9 = PUT‘. (2.7) 

An alternative approach for the transverse variables is to assume that y ,  b ,  = O(1) 
and v = O(,ue). This leads to a slightly simpler derivation of the following equations, 
but does not have the same generality. 

The usual balance for flow near resonance is made, and so a = ,u2 = ell2. For 
convenience the primes are now dropped. It is assumed that the basic state ~ ( z ) ,  p(z) 
is such that there is a linear long-wave mode whose phase speed is O(eli2). Hence we 
let 

(2.8) 

where c(z) is such that the linear long-wave modal function $(z)  satisfies the boundary- 
value problem 

(2.9) 

u(z) = - c(2) + e1’2d + O(e), 7 = tl/Z t ,  

(PC”,>, + PM$ = 0, 

with 

The equations of motion are now 

(2.10) 1 
( p  + /3d”pMQ ( - C U ,  - C, w + du/dr) + p ,  = O(C), 

= O(E), 

p y  = O(tl’Z), 

P, + p M l -  E1’2(Pcw, + X P W ,  

u, + w, + P V ,  = 0, 
c<, + LV - c”’ d v d r  = O(F), 

where d L 1  a a  
- = - + ( d + Z k ) - + W - - ,  
d r  ar ax aZ 

and with the boundary conditions 

w = - P d r  c +  O(F)  on z = 0, 

c = T b, ~ ( f ~ ) ~  + O(sli2) on y = k b,. 

We seek a perturbation solution of (2.10) by introducing expansions of the form 

g = g(0) + el/Zg(l) + O(€)  (2.11) 
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for u, v, w ,p  and 5. At zeroth order it can be shown that (2.10) has the solution 

do) = A(x ,  r )  (c$(z)),, w(O) = -CAz$,  [(") = A$, p(0) = C 2 A &  (2.12) 

where @ satisfies the boundary-value problem (2.9). 
Taking the expansion to first order, we define 

(2.13) 

Then it can be shown that [(I) satisfies the non-homogeneous boundary-value problem 

( P C 2 t 1 ) ,  + PMP' = 2(A, + 4) (PC$,), - A,,, P C V  - (PCY,), 

+ AAz(2(PC2($,2 - $$zz))z + (PC">, $ 3 3  (2.14) 
with 

&) - e/3c2[2J = eb(cy ,  - 2(A, + AA,) c$, - A A ,  c2(3& - 24q5,,)) 
5:) = d, on z = 0. 

on z = 1, 

The compatibility condition for (2.14) is obtained by multiplying by $ and integrating 
over the interval z = (0,l). It is then found that A must satisfy the forced KdV 
equation 

A ,  + AA, + rAA, + sA,,, = - G,, (2.15) 
where 

3 s' pc2& dz J: pc2$' dz 

i: 1: 
d bc2$,1z=0 - 1; PC2f4 ,  dz 

, s =  , G =  . (2.16) 0 r =  
2 pc&dz i: 2 pc&dz 2 pc&dz 

Equation (2,15) can be transformed to (1.1) by introducing 

7* = sr, A* = A / s ,  A* = rA/6s, G* = rG/6s. (2.17) 

Dropping the asterisks, the new variables will now satisfy (1.1). The behaviour of (1.1) 
will not be studied here, as extensive details of the solutions are presented in the 
literature, e.g. Grimshaw & Smyth (1986), Smyth (1987). 

Whenf= 0 and c, = 0 (2.15) reduces to that derived by Grimshaw & Smyth (1986). 
In that case the mechanism that generates the forced wave is that the bottom 
topography causes the isopycnals to be displaced, the fluid then acts to correct this 
displacement and hence a forced wave forms. When d = 0 a similar mechanism can be 
shown to hold. The presence of the contraction induces a transverse velocity, which in 
general varies with height z, hence a vertical velocity is induced and the isopycnals are 
displaced, resulting in a resonant wave being generated. If however in the Boussinesq 
limit /3-0, f and c are both independent of z (i.e. f ,  = c, = 0) then the transverse 
velocity does not vary with height, and the induced vertical velocity cannot be a 
function of z and hence, to satisfy the boundary condition, must be zero. Therefore, the 
isopycnals are not displaced and no resonant wave would be expected to be generated. 
Indeed, when d = 0 and ( C ~ J ' ) ~  = 0 then G = 0. This would indicate that a rescaling is 
necessary, which we examine in the next section. 

Note that if r = O(p)  the analysis also fails, which includes stratifications close to 
uniform. In this case a finite-amplitude analysis must be undertaken, which will result 
in an equation of the form derived by Grimshaw & Yi (1991). 
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3. The Boussinesq limit 
3.1. General stratiJcation 

From this point it will be assumed that the duct is flat bottomed (i.e. d = 0) and that 
both the side boundaries and horizontal velocity are constant with height (i.e. 
f, = c, = 0). The derivation of the previous section would suggest that in this case for 
the Boussinesq limit p- 0 no forced wave will be formed near resonance. The reason 
for this is that in this joint limit there can exist a steady flow through the contraction 
which ~ is independent of height. If we denote this steady flow by U, €6, cp  with 
w = 5 = 7 = 0, then with p = 0, 

uu, + €vuv = - cpx, 
uv, + €mu = -&, 

U z + e v ,  = 0, 
(3.1) i 

with u = f ab,(f,), on y = f b,( 1 + .f,). 
In this limit U, 21 and p are dependent only on x, y ;  therefore from (3.1) we find that 

Udv = U( 1 - Q+ O(C')), 

where U is a constant. If the O( p) Boussinesq correction is retained, then p is replaced 
by p/p(z)  and an O($) z-dependent term is introduced into the x-momentum equation. 
At O(ep) the assumption that there exists a steady flow through the contraction now 
fails. From (2.15) and (2.16) it is apparent that, in effect, an O(ep) forcing term is 
provided by the contraction. The undisturbed steady flow umust now adjust by the 
generation of nonlinear waves. At resonance, the response of the fluid is O(CI) where 
CI = O((C./~)"~)), which suggests the obvious choice for the Boussinesq parameter 
/3 = O(c) and hence a = O(c).  Note that if eitherf, or c, are O(c) a similar response will 
occur; however, as our interest is primarily with non-Boussinesq effects we will assume 
that f, = c, = 0. 

To determine the evolution equation describing the resonant generation of waves in 
this limit, the expressions (2.5) and (2.6) are again introduced. However, (2.7) is now 
replaced by 

u = u" +CIu', v = e(C'+av'), w = paw', p = €P"+CIP', 5 = a5', = par', 
(3.3) 

where u", C' and p' satisfy (3.1). Following the arguments of the preceding paragraph 
we put p =  r e  and CI = ,u2 = e. Primes are once again dropped and as the flow is 
assumed to be near resonance, we introduce 

a= -C+€S(x,y), 7 = et, (3.4) 
where c is now a constant, such that the modal function $(z) satisfies the boundary- 
value problem 

with $ = O  on z=O,1.  

Note that U = --c in (3.2) and thus we can show that 
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The material derivative is defined as 

d a  a a  
- =-+((s+u)-+w---, d7 a7 ax aZ 
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(3.7) 

and therefore the equations of motion (2.4) become 

(3.8) 1 
u,, + McJ + c { - (du/dT), - D U ~ ,  - 8, U, - CW,, - M ,  cCz - CTCM(U + S),} = 0(2), 

uy = O(e), 

u, + w, + €?Iy = 0, 

w + CQ - e((d</d7) + @&,) = 0(2)), 

with the boundary conditions 

- emc2(u + S), + O ( 2 )  on z = 1, 
w = {  0 on z = O ,  

v = T b, c ( f+) ,  + O(E)  on y = f b,. 

To solve (3.8) a perturbation series of the form 

g = g(0) + Cg(l)O(€2) (3.9) 

is introduced for u, v, w and 5. At zeroth order the solution of (3.8) is 

u(O) = cA(x,  7) $hz(z), w(") = - c A , ~ ,  Qo) = A$, (3.10) 

where q5 and c satisfy (3.5). 
At first order $') satisfies a non-homogeneous boundary-value problem of similar 

form to (2.14), where the operator on the left-hand side is now the same as for (3.5) and 
the forcing terms on the right-hand side are similar in structure to (2.14). As in 52 the 
compatibility condition for cl) is found by multiplying this equation by $ and 
integrating over the interval z = (0,l); thus it can be shown that A must satisfy the 
forced KdV equation 

A ,  + (A), + rAA, +SAX,, = yd,, (3.11) 
where 

c J: 42 dz 
, s =  7 y =  

2 $:dz 

sc2(e[4,1z=1 - [4,13 
3c $;dz 

2 &dz 2 &dz 

(3.12) 

Note that the forcing term yd, on the right-hand side of (3.1 1) agrees with - G, in 
(2.15) in the present limit i f f ,  = c, = 0 and ,!3-0. The new feature here is that the 
detuning parameter d = d,+cfnow varies with x. Equation (3.1 1) can be converted 
to the canonical form, (1.2), by introducing the variables 

7* = ST, d* = d/s, A* = rA/ (6s ) ,  y* = ry/(6s).  (3.13) 

By matching the nonlinear and forcing terms of (3.11), it can be seen that the 

A - ly/rll'2. (3.14) 

1: 
A = & +  A g c 3 ( w 1 :  - e[&I,=,> , r =  1: 

s: 1: 2 &dz 1: 

Dropping the asterisks, the new variables now satisfy (1.2). 

magnitude of the amplitude will be 



146 S. R. Clarke and R. H.  J .  Grimshaw 

If a + 0 then A + 0 and the forced wave can be neglected. In the opposite limit, if r + 0 
then A + co and therefore this derivation breaks down. This is of particular importance 
for the case of uniform stratification, which we consider next. 

3.2. Uniform stratiJication 

The term ‘uniform stratification’ denotes that the buoyancy frequency is constant and 
consequently M = 1. In the Boussinesq limit B-0, we can show that for uniform 
stratification r = 0 and thus the amplitude A will increase without bounds with 
increasing time. For stratifications which are approximately uniform r = O(P)  and 
consequently A = O(/T”’)). The derivation in the previous section for general 
stratification used the choice a = e, which since y = O(n), is more correctly a = (/3e)1’2. 
Therefore for uniform stratifications it is clear that a = O(eli2). The requirement that 
linear and nonlinear advection are of the same order of magnitude then gives that 
/3 = O(sl/’). An alternative choice which balances linear and nonlinear advection is 
a = O(1) and /3 = O(e), which results in a finite-amplitude evolution equation similar 
to that derived by Grimshaw & Yi (1991); this will be the subject of further study. 

Again the expressions (2.5), (2.6) and (3.3) are introduced, with the choice of 
parameters a = p  = el’’ and /3= d2. Further, we assume that the fluid has 
approximately uniform stratification and let 

M(z)  = 1 +Px(z).  (3.15) 

The long-wave speed must then be of the form 

where 

(3.16) 

(3.17) 

and the Boussinesq correction term c1 is unknown at this point. 

determined at this order. Therefore the equations of motion are 
In this derivation terms to O(a2) must be retained, as the evolution equation will be 

I (3.18) 

w + eae’/2cg u, + emco(uw, - ~ U U ,  + 2ac, u, + c, 8,) = O(e3/’) 

w = O  on z = O ,  

v = f b,(f,), u + O(s) 

on z = 1, 

on y = k b,. 

The form of (3.18) suggests a perturbation solution in el/’, and so expansions of the 
form (2.11) are introduced for u, v, w and <. At zeroth order the solution of (3.18) is 

(3.19) 

where q5 = sinnm. (3.20) 

At first order it can be shown that the solution of (3.18) is 

u(”) = c, A(x,  7) $,, w(o) = - c, A ,  $, ((0) = A$,  

u(’) = VA(coq ,  + c1 $,), w(l) = - ~ A , ( c , ~ , + c , $ , ) ,  Q1) = aA9, (3.21) 
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where, defining 

p: is given by 

(3.22) 

(3.23) 

At second order, proceeding in the same manner as in $92 and 3.1, it can be shown that 
the compatibility condition for $2) is that A must satisfy the forced KdV equation, 
(3.1 l), where in this case 

4. Solutions for positive forcing 
In the following three sections, it is assumed that A is of the form 

A = d,-d, O(x/x,), (4.11 

where A ,  > 0 and 8 satisfies 0 < 0 d 1, O(0) = 1, 8-t 0 as 1x1 + a. Therefore, the 
minimum velocity in the contraction is A(0) = A , - A l ,  and is denoted as A,?&. The first 
parameter, A, ,  represents a detuning parameter, while the second, A , ,  represents the 
strength of the contraction. 

When y > 0 solutions of (1.2) can be constructed using the method of Smyth (1987) 
to solve (1.1) for positive forcing. This involves dividing the domain into an inner 
region and an outer region. In the inner region, steady solutions to (1.2) which are non- 
zero as x + i- 00 are constructed ; they can be found explicitly for the limiting cases of 
long and short contractions. In the outer region, where variable velocity is no longer 
important, the governing equation is the KdV equation. In this region modulation 
solutions of the KdV equation are constructed and then matched to the inner solution. 

4.1. Inner steady solution 
When x, % 1, Grimshaw & Smyth (1986) demonstrated that as a first approximation 
for the steady part of the solution to (1.1) the dispersive term can be ignored. Invoking 
the same limit for (1.2) and assuming that the solution is steady gives 

(4.2) ( A A ) ,  + 6AA, = yd,. 

At x = 0, since A ,  = 0, then either 6 A  = - A  or A ,  = 0. The latter case can be ignored 
as this can only lead to symmetric non-resonant solutions of (4.2). Therefore, for 
resonant solutions of (4.2), the amplitude at the throat of the contraction must satisfy 
6A = - A , .  Hence, (4.2) can be integrated to give 

6A = - A ~ ( A 2 - A ~ + 1 2 ~ ( A - 4 , ) ) 1 1 2 .  (4.3) 

As A can be negative, A will only have real solutions if A ,  2 -67. The solutions as 
x+ f co are denoted respectively as A , ,  ~ and satisfy A ,  > A _ .  Therefore, the resonant 
solution of (4.2) is 

6A = -A+sgnx(A'-Ak+ 12y(A-~l , ) )~~~.  (4.4) 
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6A+ - = -do f ( A :  - + 12y(d0 - dm))li2. (4.5) 

In this hydraulic approximation, these solutions A + are terminated by shocks 
propagating with speeds V+ = A ,  + 3 A + .  In the next subsection we replace these shocks 
with modulated wavetrain;, but here we note that since V+ > 0 and V- < 0 for resonant 
flow, it follows that A; < 12ydl. 

For short contractions, where x,+O, the velocity can be written as 

d = A ,  - A ,  D~(x) ,  (4.6) 
a: 

where D = x a l P m  O(x)dx. (4.7) 

For example, if O(x) = sech2 x then D = 2xa. In this case A satisfies the KdV equation 
with a discontinuity at x = 0. Again, steady solutions in the inner region are sought. 
It can be shown using a similar approach to Grimshaw & Smyth (1 986), that the steady 
solution with unequal limits as x + & co is 

x > 0, 
= {t:; 2k2 sech2k(x-x,), x < 0, 

where k is the solution of 

16k3 = 31’2dlD(6y+do-4k2), (4.9) 

(4.10) 
1 

2k 
x,, = -ln(2+3l”), 6A+ - = -d0+4k2. and 

4.2. Outer modulated wave solutions 
The steady solutions have non-zero limits upstream and downstream of the 
contraction, which fail to satisfy the boundary conditions that A -+ 0 as 1x1 + co . 
Travelling wave solutions must be introduced so that these boundary conditions are 
satisfied. These solutions, which are constructed following Smyth (1987), are based on 
the modulation equations of Whitham (1965, 1974). The modulation theory assumes 
that the solution can be written as a slowly varying cnoidal wave: 

where 

cn2K(x-(U+d,)r)+--- 
m 

112 

K = (3 , U = 6 ( b + 2 a ( g - - & ) ) ,  

(4.1 1 )  

m is the modulus of the function cn, while K(m) and E(m) are the complete elliptic 
integrals of the first and second kind respectively. The modulation theory can then be 
used to obtain a set of characteristic equations for b, a and m. 

Upstream (i.e. x > 0) of the inner solution, the appropriate solution of the 
modulation equations is 

b = ~ ( I W  - 1 + 2E/K) 

a = a m  on m o d m <  1. (4.12) 
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The solution has two unknowns, a and m,; these are found by matching to the inner 
solution. As shown by Smyth (1987) the appropriate conditions are that b + A ,  and 
m + m, as x + 0. Hence 

a = A+(m, - 1 + 2E0/K,)-', (4.13) 

where KO, E, are respectively K(m,), E(m,), and m, is the solution of 

(4.14) 

The solution therefore occupies the region 

0 < X / T  6 A ,  + 4A+(m, - 1 + 2E,/K,)-'. (4.15) 

Note that as m-t 1, the solution (4.1 1) approaches a solitary wave of amplitude 2a: 

A = 2a sech2 ali2(x - (4a + A,)  T ) ,  (4.16) 

travelling at exactly the same speed as this edge of the modulation solution. 
Downstream (i.e. x < 0) of the inner solution, the appropriate solution is 

b = ,u(2-m-2E/K) 

To find p, the solution is again matched to the inner solution. Now as m + 1, b + A -  
and so 

,u = A _ .  (4.18) 

Therefore the downstream solution occupies the region 

do + 12A- < X / T  6 do + 2A-, (4.19) 

corresponding to the limits m --f 0 and m + 1 respectively. Note that the solitary-wave 
end of the wavetrain is now closest to the contraction. 

From the inequality (4.19) it is apparent that the downstream solution breaks down 
if 2A- > - A o ,  which is equivalent to 6A+ < A,.  When 6A+ = A,,  from (4.14) it can be 
shown that m, = 0 and consequently a = A+. Hence, if 6A+ < A,,  the upstream 
wavetrain detaches from the inner region and occupies the whole zone 0 6 m < 1, so 
that m, = 0. We find that 

a = A+,  (4.20) 

and A0-6A+ 6 x/7 < Ao+4A+. (4.21) 

This is terminated at m, = 0 by a mean level A+, corresponding to the upstream limit 
of the inner solution. 

Downstream, the wavetrain is now attached to the inner region and forms a steady 
lee wavetrain with modulus m = m, and velocity U = - A , .  Therefore, using (4.1 l), ,u 
is given by 

,u = -'4,/[2(2-ms)l. (4.22) 

There is now a steady wavetrain downstream of the contraction and a steady elevation 
upstream of the contraction. The forced KdV equation can be integrated over this 
region, to give 

AA + 3A2 +A, ,  = A ,  A+  + 3'4; - y (A ,  - A ) .  (4.23) 
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The modulus of the cnoidal wave can be found from this equation, and must satisfy 

( A ,  m,)' = 4A+(A, + 3A+) (m, - 2)'. (4.24) 

Hence, if A+ is known, the modulus can be found. In the case of long contractions, A+ 
is given by (429, as the solution will reach its asymptotic downstream value before the 
formation of the wavetrain. However, for short contractions this is no longer so, as the 
cnoidal wave forms immediately downstream of the contraction and the steady 
solution is 

A, = ("+' 
X > 0, 

pm,(l- 2 cn' K(X - x,)), x < 0, 
(4.25) 

rather than (4.8). Using continuity conditions across the singularity we can show that 

(4.26) 
cn2 KX,( 1 - m, + m, cn2 KX,) (1 - cn2 KX,) = ( A ,  D(A+ - 84, A+(Ao + 3A+) 

2-m, 

This pair of equations, together with (4.24), can be written explicitly in terms of A+ or 
m, and then solved. 

The lee wavetrain will occupy the region 

(4.27) 

where K,, E, are respectively K(m,), E(m,). A partial wavetrain with an identical value 
of p terminates the lee wavetrain. This has modulus in the range 

0 6 m < m,, 
and therefore occupies the region 

(4.28) 

(4.29) 

This approach contrasts with that of Smyth (1987), who assumed that the mean 

A,(2-m,-2Es/~,)+-2A-(2-m,) = 0. (4.30) 

Summarizing, these results can be divided into two subregimes. The first of these is 

6A+ > A ,  with A-  < 0 < A+. (4.3 1 )  

In this case a partial wavetrain forms immediately upstream of the inner solution with 
modulus in the range m, 6 m 6 1, where m, is the solution of (4.14). Downstream of 
the contraction a full wavetrain forms which acts as a transition between the 
downstream depression of the inner solution and the downstream zero level. This 
wavetrain has modulus 0 < m 6 1. In the 'weak' resonant regime, or lee wave regime, 

0 < 6A+ < A,.  (4.32) 

The upstream wavetrain is now detached from the inner solution, with m, = 0. This 
wavetrain is terminated by the upstream limit of the inner solution A + .  Downstream, 
the wavetrain is attached to the inner solution and a stationary lee wavetrain forms 
with modulus m,, given by the solution of (4.24) and (4.26). This is terminated by a 
partial wavetrain with modulus in the range 0 6 m < m,. 

height of the cnoidal wavetrain is A -  and therefore m, is the solution of 

the 'strong' resonant regime and occurs when 
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FIGURE 1. The resonant regimes for the solution of (1.2) with positive forcing. The abscissa is the 
normalized detuning parameter, while the ordinate is the normalized strength of the forcing. In 
physical terms these are proportional to the difference in the velocity of the fluid away from the 
contraction and the long-wave speed, and the magnitude of the contraction respectively. (a) Long 
contractions, (b) short contractions. S denotes the strong resonant regime and W the weak resonant 
regime. 
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These conditions can be used to determine regimes for the long and short 
contractions. For long contractions ( 4 . 9 ,  together with the condition A ,  2 -6y ,  can 
be used to show that the strong and weak regimes are respectively 

67 + A ,  - (367’ + 124,7)”’ < A ,  < 67 + A , ,  
6 ~ + A , - ( 3 6 ~ ~ + 1 2 4 , ~ - 3 4 ~ ) ~ ’ ~  < A ,  < 6 7 + A , ,  

-37 < A ,  < 0, 
0 < A ,  < 6y ,  

s: { 
6y+d,-(36y2+ 12A,y)1’2 < A ,  < 6y+A,-(36y2+ 12A,y-3A~)’12, 

w :  [ 6y+A0-(367*+ 12A,7)1’2 < A ,  < 67+A,, 

0 < A ,  < 6y. 

A ,  > 6y.  

(4.33) 

For short contractions the only distinct critical regime is the strong resonant regime, 
the lee-wave regime now has no lower limit on the subcritical domain. This can be 
demonstrated from (4.26) by noting that A ,  = 0 implies A ,  = 0. Therefore, for short 
contractions the resonant regime is 

These regimes are shown in figure 1. Together, these results for short and long 
contractions demonstrate that strong resonance can only occur if A ,  satisfies 

-37 < A ,  < 67. (4.35) 

5. Numerical solutions for positive forcing 
In the next two sections numerical solutions of (1.2) are presented for positive and 

negative forcing. These are obtained using the pseudospectral method of Fornberg & 
Whitham (1978). In both sections the shape of the contraction is described by 

O(x) = sech’x. (5.1) 

Figure 2(a) shows a typical example of the behaviour in the strong resonant regime, 
demonstrating all the features outlined in the previous section. First, a steady solution 
forms within the contraction, with a depression extending downstream. A continuous 
train of waves is generated at the upstream end of the contraction, which have form 
close to that of solitary waves. The depression downstream of the contraction is 
terminated by a receding wavetrain, for which the variation of the modulus can be 
clearly seen. At the leading edge of this wavetrain the waves are slowly separating, 
indicating that they are forming into solitary waves with m = 1. At the trailing end the 
amplitude of the waves approaches zero and they have a marked dispersive character, 
indicative that m + 0. 

An example of the behaviour for the weak resonant or lee-wave regime is shown in 
figure 2(h). The main features to notice are the wavetrain upstream of the contraction 
terminated by a mean level, which then forms a steady solution within the contraction 
and a lee wavetrain downstream of the contraction. The region that the lee wavetrain 
occupies can be seen to be linearly increasing with time, as also does the region that the 
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FIGURE 2. Numerical solutions of (1.2) for x, = 1, A ,  = 2 and y = 1 .  (a) A,, = 0, (b) A ,  = 4 

downstream wavetrain occupies. Again, downstream of the lee wavetrain there is a 
partial wavetrain with m + 0 at the trailing edge. 

The analytical approximations demonstrate that the variation in the upstream and 
downstream amplitude of the inner solution governs the behaviour of the waves that 
propagate away from the contraction. Therefore, in figure 3 the numerical values for 
these steady amplitudes are compared to the analytical predictions. In figure 3 ( a )  
comparisons are made for the strong resonant regime, and as can be seen there is very 
good agreement between the numerical and analytical solutions. In figure 3(b) the 
comparison is for the weak resonant regime and again the agreement is very good. One 
point to note from this figure is that as x, --f 0 the analytical results show that A ,  + 0. 
Therefore, in this limit the lee-wave regime encompasses the whole subcritical domain. 

Both of these figures show a monotonic increase in the upstream and downstream 
height of the inner solution with the width of the contraction. However, this is not 
always the case, especially if it arises that the long- and short-contraction limits fall into 
different regimes. One example is if the long-contraction limit of upstream height, A,,  
is small. In this case as x, increases A ,  will increase from zero to a maximum value and 
then approach the long contraction limit. 
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FIGURE 3. (a) The downstream depression height A- versus the length of the forcing x, for solutions 
of (1.2) with A ,  = 0, A ,  = 2 and y = 1. The solid lines denote the analytical limits, while the crosses 
are obtained from numerical solutions. (b)  As in (a) but now the upstream height A ,  is shown and 
A ,  = 4. 

6. Numerical solutions for negative forcing 
Although no analytical solutions can be constructed for negative forcing, we would 

expect that the regimes identified in 94 give some indication of the behaviour and, 
therefore, these are used as a starting point in classifying the numerical results. 



Resonantly generated internal waves in a contraction 155 

-1.0 -0.5 0 0.5 1 .o 1.5 

-Ao46Y) 

FIGURE 4. Classification of numerical solutions of (1.2) for negative forcing and x, = 3 :  +, 
supercritical; *, strong resonant; # , weak resonant; x , subcritical; 0, transitional cases. The curves 
separating the various regimes are given by (6.1). As in figure 1 the abscissa is the normalized detuning 
parameter, while the ordinate is the normalized strength of the forcing. 

6.1. Long contractions 
In this limit, the boundaries of the various regimes should be functions of A , / y  and 

dJy.  Therefore, in figure 4 numerical solutions of (1.2) are classified in terms of these 
two parameters. Again four regimes are found. For idol 9 A ,  supercritical and 
subcritical behaviour occurs, where a stationary disturbance develops in the 
contraction and either upstream or downstream of the contraction is a freely 
propagating transient dispersive wave. Between the subcritical and supercritical 
regimes there exists two distinct resonant regimes, which will again be termed strong 
and weak. From the classification of the numerical results it appears that the limits of 
these regimes are 

1 S : - d J 6 7  > 2 ( 4 , / 6 ~ ) ~ ,  
W: ; ( ~ l , / 6 y ) ~  < -A, /6y < 2(~I, , /6y)~, A ,  > 0. J 

In figure 5(a) an example of the strong resonant regime is shown, for which the main 
characteristics of this regime are apparent. Initially a positive disturbance forms 
downstream of the throat of the contraction and a negative disturbance upstream, in 
accordance with the small-time solution A - yd, 7. The negative disturbance develops 
into a stationary rarefaction, while the positive disturbance develops into a solitary 
wave and a wavetrain which propagates downstream. The solitary wave propagates 
upstream, being amplified on the downstream side of the contraction and damped on 
the upstream side. If it has sufficient initial energy it passes through the contraction and 
propagates upstream unchanged; one example of this can be seen. Otherwise it simply 
decays in the contraction. Once the wave has propagated upstream a new disturbance 
develops in the contraction. As nonlinear effects become important this develops into 
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FIGURE 5.  Numerical solutions of (1.2) for y = - 1, x, = 3 and A ,  = 2. (a) A ,  = 0, (b) A ,  = 4. 

a large-amplitude solitary wave, which propagates upstream, and instead of a 
wavetrain, a small-amplitude long solitary wave which propagates downstream. The 
nonlinear interactions of this small-amplitude wave with the wavetrain can be clearly 
seen. A quasi-steady state will evolve in the contraction with large-amplitude solitary 
waves being radiated upstream and compensatory small-amplitude waves being 
radiated downstream. 

A typical example of the weak resonant regime is shown in figure 5(b). Here the 
initial development is similar to that for the strong resonant regime. However, in this 
case the rarefaction is able to propagate upstream and the positive disturbance evolves 
into a wavetrain. These waves all have positive velocity and are able to propagate 
through the contraction. Within the contraction a stationary disturbance develops 
upon which these waves are superimposed. Therefore, at long times it would again be 
expected that a quasi-steady state forms, composed of a steady disturbance and 
superimposed propagating waves. Upstream of the contraction the asymptotic 
behaviour will be similar to the evolution of an initial well demonstrated by Fornberg 
& Whitham (1978). 
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FIGURE 6. As for figure 4, except that in this case x, = 0.5, there is no weak resonant regime and 
the curves are given by (6.2). 

6.2. Short contractions 
For short contractions the boundaries of the regimes would be expected to be functions 
of do/?  and D d ,  lyJ-l i2. The numerical simulations were classified on this basis and the 
results are shown in figure 6. From $94, 5 it was shown that for short contractions the 
weak resonant regime encompassed the whole subcritical domain. Similarly, there only 
appears to be three distinct regimes for negative forcing : supercritical, resonant and 
subcritical. The limits of the resonant regime appear to be given by 

Dd, > -84,/(3 I274”’), A ,  < 0, s: { D d ,  > 4 / ( 3  )2yJ1’2), d o  > 0. (6.2) 

The example of the resonant behaviour shown in figure 7(a)  illustrates the main 
characteristics of this regime. An initial disturbance forms which evolves into a 
stationary disturbance within the contraction, with a depression downstream. This 
depression is terminated by a wavetrain which propagates downstream. A train of 
large-amplitude waves is radiated upstream of the contraction and, as with the long 
contractions, for each of these large-amplitude waves a small-amplitude solitary wave 
is radiated downstream on the depression. Again the nonlinear interactions between 
these solitary waves and the wavetrain can be observed. In contrast to long 
contractions, the large-amplitude waves form and immediately propagate upstream 
without any decay or amplification. At large times a quasi-steady state will form within 
the contraction, with large-amplitude waves being periodically radiated upstream and 
compensatory small-amplitude waves being radiated downstream on the depression. 

Figure 7 (b) demonstrates the characteristics of the lee-wave regime, which are very 
similar to those for positive forcing. A lee wavetrain forms downstream of the 
contraction, which increases in length with time and is terminated by a partial 

6 F L M  274 
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FIGURE 7. Numerical solution of (1.2) with y = - 1 ,  x, = 0.5, and A, = 2. (a) A, = 0, (b)  A, = 4. 

wavetrain. Upstream of the contraction a train of solitary waves forms behind a 
rarefaction, similar to the behaviour shown in figure 5(b). 

7. Discussion 
The emphasis here has been on investigating the near-resonant generation of internal 

waves by the flow of a stratified fluid through a contraction. The response of the fluid 
in this circumstance can be categorized in terms of the parameter 6 ,  being the 
perturbation in the width of the contraction, and the Boussinesq parameter /l, defined 
by (2.2). First, if either the velocity of the oncoming flow or the width of the 
contraction vary with height, then the problem is analogous to stratified flow over a 
sill, where (1.1) applies and the response of the fluid is O ( P ) .  If the flow does not 
satisfy these conditions, then the resonant generation of waves is due to non- 
Boussinesq effects, and (1.2) applies. In this case the response will fall into one of two 
further categories : for arbitrary stratifications the wave amplitude is O((/le)liz), while 
if the fluid is approximately uniformly stratified, the wave amplitude is once again 

An analysis of (1.2) has been undertaken here for the limits of long and short 
O( P). 
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contractions. For positive forcing it has been shown that in the resonant regime the 
flow is steady within the contraction and at the upstream and downstream limits of 
the contraction waves are continually generated which then propagate away from the 
contraction. On the other hand, for negative forcing the flow is transient within 
the contraction in the resonant regime and waves are generated downstream of the 
contraction, which then propagate into the contraction and either decay or propagate 
upstream. Therefore, no steady state evolves in this case. This behaviour for negative 
and positive forcing broadly agrees with that found by Grimshaw & Smyth (1986) for 
(1.1). 

The implications of the results found here for practical situations can be considered 
using as examples the first mode of a two-layer fluid, an exponentially stratified fluid 
and a linearly stratified fluid, all with a rigid lid (i.e. e = 0). For simplicity we will only 
consider the strong resonant regime and only the result for long contractions. First, the 
limits of the resonant regimes for (1.1) must be defined. If the maximum absolute value 
of G is denoted Go, then Grimshaw & Smyth (1986) demonstrated that for positive 
forcing, where Go > 0, the strong resonant regime is given by 

-f(12G0)1/2 < d < (12G0)1/2, 

while for negative forcing, where Go < 0, the resonant regime is 

Id1 < (12 IGo1)112. (7.2) 
These results of Grimshaw & Smyth (1986) are applicable to a two-layer fluid with 

the thermocline at height z,,, flowing through a contraction where the width increases 
linearly with depth. The width of the contraction is in this case 

b,(x,z) = *bb,(l-4 -z>g(x)), (7.3) 
where max(g) = 1. In the Boussinesq limit the velocity of long waves is 
c = (z,( 1 - z,))l/', and 

(7.4) 
Therefore if 2, > f the forcing is positive and the strong resonant regime is given by 

Go = (3 -2~,)(22,- 1 ) / (8~)  

-$z,( I - 2,) (:€(3 - 22,) (22, - < U S  c 9 32,( 1 - z0) ($(3 - 22,) (22, - 1))l12. 
(7.5) 

(7.6) 
If the width of the contraction is constant with height, then in the resonant bands the 
waves will have magnitude O ( ( P S ) ~ / ~ )  and (1.2) applies. When zo c f the forcing is now 
positive, and the resonant band is 

If z, < f the forcing is negative and the strong resonant regime is 

la+ C I  9 3z0( 1 - z0) (g43 - 22,) (1 - 2 . ~ ~ ) ) ~ ' ~ .  

-:p(1-2z0)z;(l -2,y < U + c  < ;p(1-22,)2,2(1 -zo)2 (7.7) 
While if zo > f, the more common case, the forcing is negative, thus the resonant band 
is 

In+ CI < &3€(2Z, - 1) z;( 1 - Zo)')1/2. (7.8) 
For exponential and linear stratification we only consider here the resonant bands 

in a straight-sided Contraction. Again (1.2) applies, and in the resonant band the waves 
have magnitude O ( P ' ) .  In both cases the wave speed of the first-mode case will be 
c, = 7c-'. It can be shown for exponential stratification that the forcing is positive, 
therefore the resonant band is given by 

(7.9) 
6-2 
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For linear stratification the forcing is negative, consequently the resonant band is 

S.  R. Clarke and R. H. J .  Grimshaw 

lu+c,( < ( 2 E ) 1 ’ 2 P 4 .  (7.10) 

Note that for both linear and exponential stratification, although waves of significant 
amplitude are generated, the resonant bands are very small. 

The analysis undertaken here is strictly only applicable to a perturbation in an 
otherwise uniform channel; however, it does provide a first step to understanding what 
occurs at resonance. One consequence is that at or near resonance, and, as here, in the 
absence of friction, the flow in the vicinity of the contraction remains unsteady, with 
internal waves being generated both upstream and downstream of the contraction. For 
positive forcing localized regions of steady flow can occur at the contraction, and in the 
immediate downstream region. In this case, these represent a possible path to localized 
steady hydraulic solutions via the resonant generation of internal waves and the 
permanent modification of the initially undisturbed flow. On the other hand, for 
negative forcing the flow remains unsteady at the contraction, with waves being 
generated downstream and then propagating upstream. Whether such conclusions 
apply when the weakly nonlinear assumption breaks down is a point which requires 
further investigation. 
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